Space Technology Research Grants

A Novel Electrostatic/Microstructured Adhesive with Dust Mitigation Capabilities

Completed Technology Project (2016 - 2020)

Project Introduction

This work will develop a novel electrostatic/gecko-like adhesive that will demonstrate an order-of-magnitude improvement of electrostatic adhesion pressure coupled with the unique ability to shed dust particles. The increase in adhesion pressure will allow the Astrobee/SPHERES class of free-flying robots to dock or perch on smooth surfaces, rough surfaces, and even fabrics. Furthermore, the dust mitigation capabilities have the potential to transition gecko-like adhesives from laboratory experiments that require frequent cleaning by hand to flight-capable systems.

Anticipated Benefits

The increase in adhesion pressure will allow the Astrobee/SPHERES class of free-flying robots to dock or perch on smooth surfaces, rough surfaces, and even fabrics. Furthermore, the dust mitigation capabilities have the potential to transition gecko-like adhesives from laboratory experiments that require frequent cleaning by hand to flight-capable systems.

Primary U.S. Work Locations and Key Partners

A Novel Electrostatic/Microstructured Adhesive with Dust Mitigation Capabilities

Table of Contents

Project Introduction	1
Anticipated Benefits	1
Primary U.S. Work Locations	
and Key Partners	1
Project Website:	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	2
Technology Areas	3
Target Destinations	3

Space Technology Research Grants

A Novel Electrostatic/Microstructured Adhesive with Dust Mitigation Capabilities

Completed Technology Project (2016 - 2020)

Organizations Performing Work	Role	Туре	Location
Illinois Institute of Technology	Lead Organization	Academia Asian American Native American Pacific Islander (AANAPISI)	Chicago, Illinois
Ames Research Center(ARC)	Supporting Organization	NASA Center	Moffett Field, California

Primary	U.S.	Work	< Locat	ions
---------	------	------	---------	------

Illinois

Project Website:

https://www.nasa.gov/strg#.VQb6T0jJzyE

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Illinois Institute of Technology

Responsible Program:

Space Technology Research Grants

Project Management

Program Director:

Claudia M Meyer

Program Manager:

Hung D Nguyen

Principal Investigator:

Matthew Spenko

Technology Maturity (TRL)

Space Technology Research Grants

A Novel Electrostatic/Microstructured Adhesive with Dust Mitigation Capabilities

Completed Technology Project (2016 - 2020)

Technology Areas

Primary:

- TX07 Exploration Destination Systems
 - □ TX07.2 Mission
 Infrastructure,
 Sustainability, and
 Supportability
 - ☐ TX07.2.5 Particulate Contamination Prevention and Mitigation

Target Destinations

Earth, The Moon

